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A formulation is given, as well as results of the numerical solution, of the self- 
consistent problem of free convection from an instantaneous heat source in a vis- 
cous incompressible fluid. 

Free convection is considered arising in an unbounded uniform medium which is a viscous 
incompressible fluid as a result of instantaneous pointlike heat emission. This process 
can be described, provided the usual simplifications os the convection theory remain valid, 
by the following system of equations in the cylindrical coordinate system r0z (with symmetry 
with respect to the z axis): 
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For the system (1)-(3) the enthalpy conservation holds: 

(5) 2~ ,j Trdrdz = Q. 

The problem under consideration is self-consistent. In [I] an attempt was made to ob- 
tain an approximate analytic solution by expanding the sought solution in an infinite power 
series. The obtained solution, however, was only valid for low values of the Gr number. 
Another attempt at analytical solution in [2] involved a priori simplications of the original 
equations (1)-(3) based on the boundary-layer theory; one also assumed that it was valid for 
high values of the Gr number. In the present article the problem is solved numerically. 

The characteristic scales of the process were selected in the following manner: 

L ~ (2~gO)I/4t 1/2, V -- - ~ ,  0 /4t-3/2 �9 (6)  

New variables can now be introduced: r' = r/L, z' = z/L, 4' = ~/L2V, ~' = ~L/V, T' = T/| 
and the original equations (1).-(3) are now transformed into (the primes being omitted) 

2~ \ r Oz + r -~r + z r Or Oz r 2 0 z  

= - - 2  0T + (  2 ) ' / 2 (  ~ Or 2 1 0~o o~ Oz~o ) 
r Or r 2 Oz z 

Institute of Thermophysics and Electrophysics, Academy of Sciences of the Estonian SSR, 
Tallin. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 33, No. 4, pp. 700-704, Octo- 
ber, 1977. Original article submitted September 29, 1976. 

1218 0022-0841/77/3304-1218507.50 �9 1978 Plenum Publishing Corporation 



. Z  - i - -  

~o,9.?..4 \.K \ 1 \ 
12~ /  

o,8 

~.~ I ~, \ -  " , \  ~ y -  
' I \ \ L_. "r - /  

I \ \ o,@ ' ! 
i \qo2r\ 1 

o o,~ q8 o 

T//; ~ 0I ' 

i | 
j 

@ o,8 r 

Fig. i. Distribution of stream function and of tem- 
perature in hea6ed bulk for Pr = 1.0 and a) Gr = 200, 
T m = 2.12; b) Gr = 20,000, T m = 4.69 

where Gr = 8zQ/~; Pr = ~/a. 

Equation (2) and the boundary conditions (4) expressed in dimensionless variables re- 
main the same, and condition (5) assumes the form 

2~,[  ~ Trdrdz  = 1. (9) 

The above  e q u a t i o n s  can a l s o  be n o m i n a l l y  v a l i d  f o r  t he  a v e r a g e d  f l o w  p a r a m e t e r s  i n  t h e  f u l l  
turbulent state, v t >> v, a t >> a, following the principles of the well-known Prandtl hypothe- 
sis for a free boundary layer that ~t = ~:LtVt and a t = ~2LtV t [3]. Here the values ex and 
e2 characterize the level of the flow turbulence and are related to the initial conditions 
of the convective element forming. Since in this case one has L t ~ QX/4tx/2 and V t ~ Q~/~. 
t -~/2, therefore ~t and a t are independent of time. Consequently, the corresponding coor- 
dinate transformations result in equations which are the same as (7) and (8), the only differ- 
ence being that the Gr and Pr numbers are replaced by their turbulence analogs equal to 2/e~ 
and aI/~2, respectively. 

Equations (7) and (8) together with (2), (4), and (9) were solved numerically by the ad- 
justment method for various values of Gr = 200-20,000 and Pr = 0.5-7.0 for which the laminar 
state of flow is maintained. The analysis of whether it is correct to transfer the boundary 
conditions (4) from infinity to the finite boundary of the computation domain can be found 
in [3] as well as the description of the numerical procedure. The computations were carried 
out on a rectangular difference grid of 42 • 21 cells and with the coordinate Steps Ar = Az = 
0,08. 

In Fig. 1 the self-consistent distributions of ~ and T are shown computed for the values 
Gr = 200 or 20,000 for Pr = 1.0, and in Fig. 2 the same distributions are shown for Gr = 1240 
and Pr = 0.5 or 2.0. For fairly small values of Gr the nmmerical solutionyields valueswhich 
are qualitatively in agreement with the approximate solution of [i] although, strictly speak- 
ing, the latter is valid for the values of Gr not only exceeding !0. Its characteristic fea- 
ture lies in its nearly spherical form of the isothermic surfaces of the heated bulk with 
some concavity in its rear part (Fig. la). The same configuration was also observed in ex- 
periments with turbulent heated bulk in cases with a considerable initial level of turbulence 
[4-6]~ 

With the Gr number increasing due to the effect of the convective transfer of turbulence 
and of heat exceeding that of the diffusive transfer, the concavity in the rear part of the 
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Fig. 2. Distribution of stream function and of 
temperature in heated bulk for Gr = 1240 and a) 
Pr = 0.5, T m = 2.39; b) Pr = 2.0, T m = 3.64. 
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F ig .  3. R e l a t i v e  h e i g h t  o f  the rma l  l i f t  
of the heated bulk against Gr and Pr num- 
bers: i) Pr = 0.5; 2) 1.0; 3) 2.0. 

heated bulk increases, and on the periphery a closed zone is also formed in which the tem- 
perature exceeds its highest value on the symmetry axis. As a result of the increased heat 
concentration on the periphery the heated bulk assumes a characteristic mushroom shape, that 
is, it changes into a torus-shaped configuration (Fig. Ib). Higher Pr have a similar effect 
on the corresponding distributions in the heated bulk as that due to higher Gr (Fig. 2a, b). 

The mushroom and toruslike shapes obtained by numerical computations were also observed 
in experiments with laminar heated bulks for moderately large Gr [7] and for heated bulks 
with a fairly low turbulence level [8]. However, the results of [2] are not confirmed by the 
above experimental results and our computations. 

In Fig. 3 the highest ordinate L of the heated bulk referred to length Zis shownagainst 
the Gr and Pr numbers. One can see from the diagrams that after some initial growth the rela- 
rive height of the rise starts to decline for higher Gr values. This, at first sight, para- 
doxical effect was predicted on the basis of theoretical considerations and was also observed 
experimentally [9]. A higher Pr shows a similar effect. 

Unfortunately, only qualitative comparisons can be made between the results obtained by 
numerical computations and the experimental data, owing to lack of information necessary for 
quantitative estimates. The latter is due to the relatively long time needed for attaining 
the self-consistent state for higher Gr values and also to the special features of the pro- 
cess on the not self-consistent portion (in particular~ due to considerable heat losses [7]); 
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primarily, however, it is due to the difficulties in obtaining reliable experimental data for 
this kind of unstable flow. The latter determines the efficiency of numerical methods for 
investigating the process at this stage. 

NOTATION 

r, z, axes of cylindrical coordinate system; 4, stream function; ~, vortex; T, exces- 
sive temperature in relation to unperturbed surrounding medium; t, time; g, gravitational 
acceleration; 8, volume expansion coefficient; 9, a, coefficient of kinematic viscosity and 
thermal diffusivity; ~t, at, turbulence analogs of the respective coefficients; Q, power of 
instantaneous heat generation; L, V, and | length, velocity, and temperature scales, re- 
spectively; Lt, Vt, and | the same, but for turbulent flow; Gr and Pr, Grashof and Prandtl 
numbers; ~, a=, proportionality coefficients; Z, highest ordinate of frontal boundary of 
heated bulk (on the isotherm T = 0.1Tm); Tm, highest value of excessive temperature. 
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INVESTIGATION OF HEAT TRANSFER OF FREE CONVECTION IN 

BOUNDED VOLUME WITH HEATING FROM ABOVE 

N. V. Markelova and M. G. Kaganer UDC 536.25 

The convection coefficient is found against the Rayleigh number in a bounded volume 
with heating from above. 

The effect of free convection in the case of heating from above has been studied rela- 
tively little [i]. It was established in [2-4] that free-convection streams arise in abounded 
volume in the case of nonuniform heating of the upper wall. In [3], Nu as a function of Ra 
was found experimentally in ~he interval 102-105 in accordance with which Nu increases from 
1 to 1.2. 

The neck is the basic "thermal bridge" in vessels for cryogenic fluids with a wide neck 
and in cryostats. It is established in the present article that convection streams can arise 
in the neck due to heating from above from the surrounding medium leading to a considerable 
increase of the heat influx to a cryogenic fluid. 

The investigations of free-convection heat transfer were carried out on models in the 
form of vertical cylindrical vessels or tubes in the 60-200-mm-diameter range and the 90- 
180-mm-height range. The stand arrangement is shown in Fig. i. The cylindrical vessel 1 
whose lower part is filled with liquid nitrogen is enclosed by a protective chamber 2. The 
evaporating nitrogen leaves the vessel at the top. Heat transfer between the vessel wall 
and the exiting cold gas results in a decrease of the heat flux along the wall [5]. In 
addition to forced convection in the neck, free convection can also arise which produces 
heat flux through the gas from the upper cap toward the liquid. 

Translated from Inzhenerno-Fizicheskii Zhurna!, Vol. 33, No. 4, pp. 705-708, October, 
1977. Original article submitted September 13, 1976. 
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